Abstract

Coded computation techniques provide robustness against <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">straggling</i> workers in distributed computing. However, most of the existing schemes require exact provisioning of the straggling behavior and ignore the computations carried out by straggling workers. Moreover, these schemes are typically designed to recover the desired computation results accurately, while in many machine learning and iterative optimization algorithms, faster approximate solutions are known to result in an improvement in the overall convergence time. In this paper, we first introduce a novel coded matrix-vector multiplication scheme, called <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">coded computation with partial recovery (CCPR)</i> , which benefits from the advantages of both coded and uncoded computation schemes, and reduces both the computation time and the decoding complexity by allowing a trade-off between the accuracy and the speed of computation. We then extend this approach to distributed implementation of more general computation tasks by proposing a coded communication scheme with partial recovery, where the results of subtasks computed by the workers are coded before being communicated. Numerical simulations on a large linear regression task confirm the benefits of the proposed scheme in terms of the trade-off between the computation accuracy and latency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.