This paper presents the feature analysis and design of compensators for speaker recognition under stressed speech conditions. Any condition that causes a speaker to vary his or her speech production from normal or neutral condition is called stressed speech condition. Stressed speech is induced by emotion, high workload, sleep deprivation, frustration and environmental noise. In stressed condition, the characteristics of speech signal are different from that of normal or neutral condition. Due to changes in speech signal characteristics, performance of the speaker recognition system may degrade under stressed speech conditions. Firstly, six speech features (mel-frequency cepstral coefficients (MFCC), linear prediction (LP) coefficients, linear prediction cepstral coefficients (LPCC), reflection coefficients (RC), arc-sin reflection coefficients (ARC) and log-area ratios (LAR)), which are widely used for speaker recognition, are analyzed for evaluation of their characteristics under stressed condition. Secondly, Vector Quantization (VQ) classifier and Gaussian Mixture Model (GMM) are used to evaluate speaker recognition results with different speech features. This analysis help select the best feature set for speaker recognition under stressed condition. Finally, four VQ based novel compensation techniques are proposed and evaluated for improvement of speaker recognition under stressed condition. The compensation techniques are speaker and stressed information based compensation (SSIC), compensation by removal of stressed vectors (CRSV), cepstral mean normalization (CMN) and combination of MFCC and sinusoidal amplitude (CMSA) features. Speech data from SUSAS database corresponding to four different stressed conditions, Angry, Lombard, Question and Neutral, are used for analysis of speaker recognition under stressed condition.
Read full abstract