The small number of pixels in the current linear mode avalanche photodiode (LM-APD) array limits its three-dimensional (3D) imaging resolution. We use an optical phased array-based beam array subdivided pixel method to improve the 3D imaging resolution, using an optical phased array to generate a beam array with the same number of pixels as the LM-APD array and matching positions and controlling each sub-beam in the beam array to scan in the field of view of the corresponding pixel. The sub-beam divergence angle in the beam array is smaller than the instantaneous field of view angle of a single pixel in the LM-APD array. The sub-beam scanning in a single pixel’s field of view realizes the multiple acquisition of the target 3D information by the LM-APD array, thus improving the resolution of the LM-APD array. The distribution of the beam array in the far field is simulated, and the main performance parameters of 3D imaging are analyzed. Finally, a liquid crystal phase modulator is used as an optical phased array device to conduct experiments on a target 20 m away, and the results prove that our method can improve the resolution from 4 × 4 to 8 × 8, which can be improved at least four times.