Some interesting nonlinear generalizations have been proposed recently for the linear Schroedinger, Klein-Gordon, and Dirac equations of quantum and relativistic physics. These novel equations involve a real parameter q and reduce to the corresponding standard linear equations in the limit q → 1. Their main virtue is that they possess plane-wave solutions expressed in terms of a q-exponential function that can vanish at infinity, while preserving the Einstein energy-momentum relation for all q. In this paper, we first present new travelling wave and separated variable solutions for the main field variable Ψ(x→,t), of the nonlinear Schroedinger equation (NLSE), within the q-exponential framework, and examine their behavior at infinity for different values of q. We also solve the associated equation for the second field variable Φ(x→,t), derived recently within the context of a classical field theory, which corresponds to Ψ∗(x→,t) for the linear Schroedinger equation in the limit q → 1. For x ∈ ℜ, we show that certain perturbations of these q-exponential solutions Ψ(x, t) and Φ(x, t) are unbounded and hence would lead to divergent probability densities over the full domain −∞ < x < ∞. However, we also identify ranges of q values for which these solutions vanish at infinity, and may therefore be physically important.
Read full abstract