Abstract

In this paper we consider Dirac operators in $\mathbb R^n$, $n\geq2$, with a potential $V$. Under mild decay and continuity assumptions on $V$ and some spectral assumptions on the operator, we prove a limiting absorption principle for the resolvent, which implies a family of Strichartz estimates for the linear Dirac equation. For large potentials the dynamical estimates are not an immediate corollary of the free case since the resolvent of the free Dirac operator does not decay in operator norm on weighted $L^2$ spaces as the frequency goes to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.