Brassinazole-Resistant (BZR) is an important transcription factor (TF) in the brassinosteroid (BR) signaling pathway, which plays a crucial role in plant growth, development and stress resistance. In this study, we performed a genome-wide analysis of BZRs in garlic (Allium sativum L.) and identified a total of 11 members of the AsBZR gene family. By comparing the expression patterns of AsBZR genes under salt stress, the candidate gene AsBZR11 with salt tolerance function was identified. Subcellular localization results showed that AsBZR11 was localized in the nucleus. The salt tolerance of overexpression lines improved, and the germination rate and root length of overexpression lines increased as compared with wild type. The content of reactive oxygen species (ROS) decreased, and the activity of antioxidant enzymes increased in AsBZR11-OE, suggesting that AsBZR11 has the function of improving plant salt tolerance. Our results enriched the knowledge of plant BZR family and laid a foundation for the molecular mechanism of salt tolerance of garlic, which will provide a theoretical basis for the subsequent creation of salt-tolerant germplasm resources.
Read full abstract