Metal Matrix Composites (MMC's) have evoked a keen interest in recent times for potential applications. Advance composite materials like Al/SiC metal matrix composite is gradually becoming very important materials in manufacturing industries e.g. aerospace, automotive and automobile industries due to their superior properties such as light weight, low density, high strength to weight ratio, high hardness, high temperature and thermal shock resistance, superior wear and corrosive resistance, high specific modulus, high fatigue strength etc. In this study aluminum (Al-6063)/SiC Silicon carbide reinforced particles metal-matrix composites (MMCs) are fabricated by melt-stirring technique. The MMCs bars and circular plates are prepared with varying the reinforced particles by weight fraction ranging from 5%, 10%, 15%, and 20%. The average reinforced particles size of SiC are 220 mesh, 300 mesh, 400 mesh respectively. The stirring process was carried out at 200 rev/min rotating speed by graphite impeller for 15 min. The microstructure and mechanical properties like Proportionality (MPa) limit, Tensile strength upper yield point (MPa), Tensile strength lower yield point (MPa), Ultimate tensile strength (MPa), Breaking strength(MPa), % Elongation, % Reduction in area, Hardness (HRB), Density (gm/cc), Impact Strength (N.m) are investigated on prepared specimens of MMCs. It was observed that the hardness of the composite is increased with increasing of reinforced particle weight fraction. The tensile strength and impact strength both are increased with rising of reinforced weight fraction. Different mechanical tests were conducted and presented by varying the particle size and weight fractions of SiC.