Ohno and Zagier (Indag Math 12:483–487, 2001) found that a generating function of sums of multiple polylogarithms can be written in terms of the Gauss hypergeometric function 2F1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${}_2F_1$$\\end{document}. As a generalization of the Ohno and Zagier formula, Ihara et al. (Can J Math 76:1–17, 2022) showed that a generating function of sums of interpolated multiple polylogarithms of Hurwitz type can be expressed in terms of the generalized hypergeometric function r+1Fr\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${}_{r+1}F_r$$\\end{document}. In this paper, we establish q- and elliptic analogues of this result. We introduce elliptic q-multiple polylogarithms of Hurwitz type and study a generating function of sums of them. By taking the trigonometric and classical limits in the main theorem, we can obtain q- and elliptic generalizations of the Ihara, Kusunoki, Nakamura and Saeki formula.
Read full abstract