Physically reconfigurable, tessellated acoustic arrays inspired by origami structures have recently been leveraged to adaptively guide acoustic energy. Yet, the prior work only examined tessellated arrays composed from uniform folding patterns, so that the limited folding-induced shape change prohibits broad acoustic field tailoring. To explore a wider range of opportunities by origami-inspired acoustic arrays, here, piecewise geometries are assembled from multiple folding patterns so that acoustic transducer elements are reconfigured in more intricate ways upon array folding. An analytical model of assembled geometries and resulting acoustic wave radiation from the oscillating facets is formulated. Using the theoretical tool, parametric investigations are undertaken to study the adaptation of acoustic energy transmission caused by folding and modularity of the array assembly. A proof-of-concept specimen is fabricated and experiments are conducted to validate the theoretical model and to investigate the efficacy of the piecewise acoustic array concept. The total findings reveal that the assembly of tessellated acoustic arrays may emulate the wave radiation emitted by ideal acoustic sources of intricate shapes. Moreover, by exploitation of origami folding actions, the shape adaptations of the proposed arrays permit straightforward wave guiding opportunities for diverse application needs.
Read full abstract