Trajectory tracking in upper limb rehabilitation exercises is utilized for repeatability of joint movement to improve the patient’s recovery in the early stages of rehabilitation. In this article, non-linear active disturbance rejection control as a combination of non-linear extended-state observer and non-linear state error feedback is used for the sinusoidal trajectory tracking control of the two-link model of an upper limb rehabilitation exoskeleton. The two links represent movements like flexion/extension for both the shoulder joint and the elbow joint in the sagittal plane. The Euler–Lagrange method was employed to acquire a dynamic model of an upper limb rehabilitation exoskeleton. To examine the efficacy and robustness of the proposed method, four disturbances cases in simulation studies with 20% parameter variation were applied. It was found that the non-linear active disturbance rejection control is robust against disturbances and achieves better tracking as compared to proportional–integral–derivative and existing conventional active disturbance rejection control method.
Read full abstract