It is challenging to repair wide or irregular defects with traditional skin flaps, and anterolateral thigh (ALT) lobulated perforator flaps are an ideal choice for such defects. However, there are many variations in perforators, so good preoperative planning is very important. This study attempted to explore the feasibility and clinical effect of digital technology in the use of ALT lobulated perforator flaps for repairing complex soft tissue defects in limbs. Computed tomography angiography (CTA) was performed on 28 patients with complex soft tissue defects of the limbs, and the CTA data were imported into Mimics 20.0 software in DICOM format. According to the perforation condition of the lateral circumflex femoral artery and the size of the limb defect, one thigh that had two or more perforators from the same source vessel was selected for 3D reconstruction of the ALT lobulated perforator flap model. Mimics 20.0 software was used to visualize the vascular anatomy, virtual design and harvest of the flap before surgery. The intraoperative design and excision of the ALT lobulated perforator flap were guided by the preoperative digital design, and the actual anatomical observations and measurements were recorded. Digital reconstruction was successfully performed in all patients before surgery; this reconstruction dynamically displayed the anatomical structure of the flap vasculature and accurately guided the design and harvest of the flap during surgery. The parameters of the harvested flaps were consistent with the preoperative parameters. Postoperative complications occurred in 7 patients, but all flaps survived uneventfully. All of the donor sites were closed directly. All patients were followed up for 13-27months (mean, 19.75months). The color and texture of each flap were satisfactory and each donor site exhibited a linear scar. Digital technology can effectively and precisely assist in the design and harvest of ALT lobulated perforator flaps, provide an effective approach for individualized evaluation and flap design and reduce the risk and difficulty of surgery.
Read full abstract