In comparison to their weight, honeycomb composite structures have a high bending stiffness, which makes them very suited for every application such as airplanes, railway-cars and vehicles, where little weight is important. The sandwich panels consist of two thin and stiff aluminum face sheets, which are bonded to a thick and lightweight aluminum honeycomb core. These structures are subjected to dynamic loading. However, in the literature, there are hardly any fatigue properties of the honeycomb core described. The fatigue properties of the core are investigated using the finite element method and experiments. Depending on the load application, the honeycomb core fails either through core indentation or shear failure. For a fatigue prediction, both failure modes have to be investigated. Additionally, the physical behavior of the honeycomb core is depending on the orientation of the core. Hence, fatigue tests were conducted in three directions of the core: the stiffest direction, the most compliant direction and the direction with the highest stresses. A three-point bending test setup was built to study the fatigue properties of the honeycomb core. Several fatigue tests were carried out with a load ratio of R = 0.1 (maximum load 10 times bigger than minimum load) and the fatigue diagrams being illustrated. Additionally, food-cart roller tests (wheels of a cart rolling in a circle on a floor panel) were done to dynamically test the panels in every angle. The sandwich structures were modeled with the ANSYS finite element software. The simulations, which were used to determine the stress amplitudes in the specimens, are described later. In addition, buckling analyses were used to examine core indentation failure. Based on these simulations, failure predictions can be made. The fatigue life of the examined specimens is successfully approximated in this manuscript, with the lifetime analysis being based on the FKM guideline (error less than 14% in load amplitude).
Read full abstract