Abstract

A sandwich-structured composite is a special class of composite materials that is fabricated by attaching two thin but stiff layers to a lightweight but thick core. Composites analyzed in this paper consist of two different materials: auxetic and structural steel. The optimization criterion is minimum compliance for the load case where the frame's top boundary is downward loaded. Outer layers are made of steel while the middle layer is two-phase solid material composite. Only the middle layer is optimized by means of minimization of the objective function defined as the internal strain energy. In the first part of this paper we study the application of the solid isotropic material with penalization (SIMP) model to find the optimal distribution of a given amount of materials in sandwich-structured composite. In the second part we propose a multilayered composite structure in which internal layers surfaces are wavy. In both cases the total energy strain is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.