Slepton coannihilation is one of the most promising scenarios that can bring the predicted Dark Matter (DM) abundance in the the Minimal Supersymmetric Standard Model (MSSM) into agreement with the experimental observation. In this scenario, the lightest supersymmetric particle (LSP), usually assumed to be the lightest neutralino, χ~10\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ ilde{\\chi }_{1}^0$$\\end{document} can serve as a Dark Matter (DM) candidate while the sleptons as the next-to-LSPs (NLSPs) lie close in mass. In our previous studies analyzing the electroweak sector of MSSM, a degeneracy between the three generations of sleptons was assumed for the sake of simplicity. In case of slepton coannihilation this directly links the smuons involved in the explanation for (g-2)μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(g-2)_\\mu $$\\end{document} to the coannihilating NLSPs required to explain the DM content of the universe. On the other hand, in well-motivated top-down models such degeneracy do not hold, and often the lighter stau turns out to be the NLSP at the electroweak (EW) scale, with the smuons (and selectrons) somewhat heavier. In this paper we analyze such a scenario at the EW scale assuming non-universal slepton masses where the first two generations of sleptons are taken to be mass-degenerate and heavier than the staus, enforcing stau coannihilation. We analyze the parameter space of the electroweak MSSM in the light of a variety of experimental data namely, the DM relic density and direct detection limits, LHC data and especially, the discrepancy between the experimental result for the anomalous magnetic moment of the muon, (g-2)μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(g-2)_\\mu $$\\end{document}, and its Standard Model (SM) prediction. We find an upper limit on the lightest neutralino mass, the lighter stau mass and the mass of the tau sneutrino of about ∼550GeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim 550 \\,\\, {\ extrm{GeV}}$$\\end{document}. In contrast to the scenario with full degeneracy among the three families of sleptons, the upper limit on the light smuon/selectron mass moves up by ∼200GeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim 200 \\,\\, {\ extrm{GeV}}$$\\end{document}. We analyze the DD prospects as well as the physics potential of the HL-LHC and a future high-energy e+e-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$e^+e^-$$\\end{document} collider to investigate this scenario further. We find that the combination DD experiments and e+e-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$e^+e^-$$\\end{document} collider searches with center of mass energies up to s∼1100GeV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sqrt{s} \\sim 1100 \\,\\, {\ extrm{GeV}}$$\\end{document} can fully cover this scenario.
Read full abstract