Abstract

We examine whether the cosmic ray positron excess observed by PAMELA can be explained by neutralino annihilation in the next-to-minimal supersymmetric standard model (NMSSM). The main dark matter annihilation products are the lightest $CP$-even scalar ${h}_{1}$ plus the lightest $CP$-odd scalar ${a}_{1}$, with the ${a}_{1}$ decaying into two muons. The energetic positrons needed to explain PAMELA are thus obtained in the NMSSM simply from kinematics. The required large annihilation cross section is obtained from an $s$-channel resonance with the heavier $CP$-odd scalar ${a}_{2}$. Various experiments constrain the PAMELA-favored NMSSM parameter space, including collider searches for a light ${a}_{1}$. These constraints point to a unique corner of the NMSSM parameter space, having a lightest neutralino mass around 160 GeV and a very light pseudoscalar mass less than a GeV. A simple parametrized formula for the charge-dependent solar modulation effects reconciles the discrepancy between the PAMELA data and the estimated background at lower energies. We also discuss the electron and gamma-ray spectra from the Fermi LAT observations, and point out the discrepancy between the NMSSM predictions and Fermi LAT preliminary results and possible resolution. An NMSSM explanation of PAMELA makes three striking and uniquely correlated predictions: the rise in the PAMELA positron spectrum will turn over at around 70 GeV, the dark matter particle mass is less than the top quark mass, and a light sub-GeV pseudoscalar will be discovered at colliders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.