Summary The thermal development process for light oil reservoirs using air injection technology is to release heat through low-temperature oxidation (LTO) between the injected air and crude oil and gradually increase the reaction zone’s temperature to displace crude oil. However, existing LTO experimental methods for air injection do not adequately capture the characteristics of LTO and struggle to directly obtain LTO kinetic parameters at low temperatures. In this paper, we used light oil samples from the Huabei Oilfield, China, as the studied objects and proposed innovative methods for obtaining and calculating LTO kinetic parameters. Further, we validated the feasibility of the proposed methods through experimental and numerical simulations. The results indicate that the lower limit temperature at which oxidation parameters can be directly measured through the accelerating rate calorimeter (ARC) experiments is 124°C. We matched the calculations from the ARC experiment curve-extension method for kinetic parameters with the results from both the high-pressure thermogravimetric analyzers (HP-TGA) experiment and the ramped thermal oxidizer (RTO) experiment. The fit between these results indicates that three methods are suitable for obtaining LTO parameters and can be used to derive chemical equations for LTO reactions in numerical simulation models. The simulation results from the reservoir scale indicate that, following air injection into the light oil reservoir, the peak temperature at the leading edge of the high-temperature zone reaches 370.9°C. The interaction between crude oil and air remains in the LTO phase, facilitating a sustained thermal accumulation within the reservoir. This study can provide a reference for reservoir development under similar conditions.
Read full abstract