Abstract
Asphaltene precipitation (AP) is recognized as a complicated occurrence that results in weakening reservoir characteristics and subsequent considerable decline in oil production rate. Asphaltene instability occurs due to variations in thermodynamic properties such pressure, temperature, and mixture composition. AP prediction is an important design factor in implementation of any enhanced oil recovery (EOR) process. In this study, experiments were conducted using some light oil samples to measure important phase behavior properties such as the bubble point pressure (BPP) and the amount of precipitated asphaltenes. A thermodynamics model was also developed to determine equilibrium compositions of the oil samples, considering AP. Then, potential application of a feed-forward artificial neural network (ANN) model, optimized by the imperialist competitive algorithm (ICA), was proposed to estimate BPP and the amount of AP. Comparison between the ICA-ANN predictions and the experimental data shows that the avera...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.