Light-induced drift has many applications in astrophysics, semiconductor physics, and isotope separation. Light-induced drift velocity is a key parameter to characterize the effect of light-induced drift. Laser linewidth exerts a great influence on light-induced drift velocity through influencing the velocity selectivity of atomic excitation, so it is an important factor that cannot be ignored in the study of light-induced drift. However, in existing theoretical studies, the influence of laser linewidth is seldom considered and the exciting light is always treated as monochromatic light. Furthermore, in a few theoretical studies about laser linewidth, the numerical model adopted does not include all the factors of light-induced drift, such as energy level degeneracy, hyperfine structure, and collision model, which will cause the error of calculation. In order to study the influence of laser linewidth on light-induced drift velocity, a four-level rate equation model is established to describe the atomic energy level transition in the process of light-induced drift. In the theoretical model, we introduce strong collision model to describe collisions between atoms and buffer gas. The influences of energy level degeneracy and hyperfine structure are also taken into account. Numerical method is used to calculate the four-level rate equation. According to the calculation results, the influence of laser linewidth on drift velocity of alkali metal atoms is analyzed. The results show that as the linewidth increases, the value of drift velocity first increases and then decreases. There is an optimal linewidth that maximizes the drift velocity. For the best light-induced drift effect, the laser should work under the optimal linewidth condition. When the laser linewidth fluctuates near the optimum linewidth, the laser linewidth should be set to be slightly wider than the optimal linewidth. This can reduce the influence of fluctuation and obtain a better drift effect. In addition, as the laser linewidth increases, the optimum power density corresponding to the maximum drift velocity decreases. When the laser linewidth is narrow, small fluctuations near the optimal laser power density will not have great influence on drift velocity. When the laser linewidth is wide, the power density should be set strictly. The optimum linewidth is related to laser power density, temperature and buffer gas pressure. As the laser power density increases, the value of optimum linewidth first increases rapidly and then decreases slowly. The value of optimal linewidth also increases linearly with the increase of temperature, and it decreases with the increase of buffer gas pressure. In conclusion, the laser linewidth does play a key role in the process of light-induced drift. The results of this study can provide a theoretical basis for future experiments, and be a good reference to the selection of exciting light.
Read full abstract