Enhancement of light extraction in GaN light-emitting diode (LED) by addressing an array of nanomaterials is investigated by means of three dimensional (3D) finite-difference time-domain (FDTD) simulation experiments. The array of nanomaterials is placed on top of the GaN LED and is used as a light extraction layer. Depending on its empirically capable features, the refractive index of nanomaterials with perfectly spherical (particle) and hemispherical (plano-convex lens) shapes were decided as 1.47 [Polyethylene glycol (PEG)] and 2.13 [Zirconia (ZrO2)]. As a control experiment, a 3D FDTD simulation experiment of GaN LED with PEG film deposited on top is also carried out. Different light extraction profiles between subwavelength- and over-wavelength-scaled nanomaterials addressed GaN LEDs are observed in distributions of Poynting vector intensity of the light extraction layer–applied GaN LEDs. In addition, our results show that the dielectric effect on light extraction is more efficient in the light extraction layer with over-wavelength scaled features. In the case of a Zirconia particle array (ϕ = 500 nm) with hexagonal closed packed (hcp) structure on top of a GaN LED, light extraction along the normal axis of the LED surface is about six times larger than a GaN LED without the extraction layer.
Read full abstract