Flood risk management usually hinges on accurate water level identification in urban streams such as rivers or creeks. Although research has emphasised the applicability of ultrasonic sensors as a contactless technology for sensor-based water level monitoring, Light Detection and Ranging (LiDAR) sensors are less sensitive to weather conditions that typically happen during flood events, such as dust, fog and rainfall. However, there has been little research on the applicability of LiDAR sensors in this field. No previous literature has analysed the impact of complicating variables on the quality of predictions or evaluated the possible benefits of using a combined approach with Inertial Measurement Units (IMU) and machine learning to produce superior predictions. In this work, we collected a dataset in a laboratory condition synchronising data from a LiDAR, an ultrasonic sensor and an IMU in an experimental device. We controlled the incidence angle, the distance, and the water turbidity to analyse their effect on the predictions. Traditional machine-learning techniques were evaluated as models to combine data from distance and inertial sensors, reducing the error rates compared to individual sensors’ predictions. Results indicated a sharp drop in the mean absolute error, root mean squared error and coefficient of determination for all water turbidity and incidence angles considered, especially when tree-based ensembles were used. The ultrasonic sensor led to improved results for low water turbidity and increased incidence angle, but statistically significant differences were not found in the other cases.
Read full abstract