Abstract

Along with the development of autonomous driving technology, the need for self-failure diagnosis and Remaining Useful Life (RUL) prediction technology for core parts for autonomous driving is increasing. In particular, the characteristics of the light detection and ranging (LIDAR) sensor exposed to the outside further increase the need to apply fault diagnosis and RUL prediction technology considering various environmental variables. In this study, based on the accelerated degradation test of LIDAR, the failure mode was analyzed. Through this, LIDAR failure due to thermal runaway, which is the first failure type in high temperature conditions, was identified, and whether there were major environmental data that could identify thermal runaway was identified. In the case of LIDAR's thermal runaway phenomenon, a study on an algorithm to identify the precursor symptoms of failure in an accidental failure situation is conducted. Afterwards, through the actual vehicle test process, various environmental variable information is analyzed for correlation with LIDAR internal sensor data, and the abnormal data for the temperature of the internal parts of the LIDAR is predicted through the external environmental sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call