Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.
Read full abstract