Abstract

Calorie lowering slows the aging process and extends life span in diverse species by so far unknown mechanisms. The inverse linear relationship between calorie intake and life span suggests that regulators of energy metabolism are of importance in aging. The present study shows that lifelong caloric restriction in mice induces a metabolic adaptation with reduced lipogenesis and enhanced lipolysis and ketogenesis. This process, that is, the reprogramming of hepatic fat metabolism, is associated with a marked rise of fibroblastic growth factor 21 as a putative starvation master regulator. Due to the life span-extending properties of fibroblastic growth factor 21, the rise in fibroblastic growth factor 21 might contribute to the markedly better health status found in mice upon lifelong caloric restriction feeding. In addition, adropin, known as a peptide that controls lipid homeostasis, is significantly upregulated, underlining the diminution of lipogenesis that was further substantiated by decreased expression of liver-X-receptor α and its target genes sterol regulatory element-binding protein-1c, fatty acid synthase, and member 1 of human transporter subfamily ABCA upon lifelong caloric restriction feeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.