The linear diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-P4VP) is an important copolymer recently used in many applications such as optoelectronics, sensors, catalysis, membranes, energy conversion, energy storage devices, photolithography, and biomedical applications. (1) Background: The surface thermodynamic properties of PS-P4VP copolymers are of great importance in many chemical and industrial processes. (2) Methods: The inverse gas chromatography (IGC) at infinite dilution was used for the experimental determination of the retention volumes of organic solvents adsorbed on copolymer surfaces as a function of temperature. This led to the variations in the free energy of interaction necessary to the evaluation of the London dispersive and polar acid–base surface energies, the polar enthalpy and entropy, the Lewis acid–base constants, and the transition temperatures of the PS-P4VP copolymer. (3) Results: The application of the thermal Hamieh model led to an accurate determination of the London dispersive surface energy of the copolymer that showed non-linear variations versus the temperature, highlighting the presence of two transition temperatures. It was observed that the Lewis acid–base parameters of the copolymer strongly depend on the temperature, and the Lewis base constant of the solid surface was shown to be higher than its acid constant. (4) Conclusions: An important effect of the temperature on the surface thermodynamic properties of PS-P4VP was proven and new surface correlations were determined.