Abstract

Urushiol-titanium chelate polymer (UTP), the reaction product of urushiol with titanium compound, is a special eco-friendly polymer with excellent performances, such as strong acids-resistance, strong alkalis-resistance, salt solution-resistance and several organic solvent-resistance. Inverse gas chromatography (IGC) was used to measure the dispersive component of surface free energy (gamma(s)d) and the Lewis acid-base parameters of UTP in this work. The gamma(s)d and the acid/base characters of UTP' surfaces were estimated by the retention time with different non-polar and polar probes at infinite dilution region. n-Pentane (C5), n-hexane (C6), n-heptane (C7), n-octane (C8) and n-nonane (C9) were chosen as the non-polar probes to characterize the gamma(s)d. Trichloromethane (CHCl3), tetrahydrofuran (THF) and acetone were chosen as polar probes to detect the Lewis acid-base parameters. The specific free energy (deltaG(a)AB) and the enthalpy (deltaH(a)AB) of adsorption corresponding to acid-base surface interactions were determined. By correlating deltaH(a)AB with the donor and acceptor numbers of the probes, the acidic (K(a)) and the basic (K(b)) parameters of the samples were calculated. The results showed that the dispersive components of the free energy of UTP were 37.68, 33.53, 35.92, 24.01 and 31.32 mJ/m2 at 70, 80, 90, 100 and 110 degrees C, respectively. The Lewis acidic number K(a) of UTP was 0.185 3, and the Lewis basic number K(b) was 0.966 2. The results were of great importance to the study of the surface properties and the applications for urushiol-metal chelate polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call