We propose a stochastic process modelling of covid-19 deaths in Ghana. The objective is to accurately capture the death processes resulting from the pandemic and to predict future deaths resulting from Covid-19 infections in Ghana. The mathematical derivation is based strictly on the compound Poisson process, a class of a Levy process. The model is verified by using empirical data of deaths resulting from Covid-19 from the onset of the pandemic up to the time of writing this report. That is, Covid-19 deaths in Ghana from March to August 2020. The method departs slightly from the usual differential equations used in modeling pandemics due to the unique occurrence of deaths from the disease in Ghana. As the methods are basically compound Poisson process, we delve into Levy processes as it allows us to effectively simulate the future behaviour of the death process. To test the effectiveness of the model, we compared the simulated results to the actual reported number of deaths from Covid-19 cases in Ghana from March to August 2020. The results show that at a 95% confidence interval there is no significant difference between the actual deaths and the simulated results. The results of the simulation, when extended to February 2021 (one year after the advent of the pandemic) shows that if the current conditions remain same, that is, if there is no immediate intervention by the discovery of an effective drug or a vaccine, then the number of deaths could reach four hundred and forty six (446) by February 28, 2020.We propose a stochastic process modelling of covid-19 deaths in Ghana. The objective is to accurately capture the death processes resulting from the pandemic and to predict future deaths resulting from Covid-19 infections in Ghana. The mathematical derivation is based strictly on the compound Poisson process, a class of a Levy process. The model is verified by using empirical data of deaths resulting from Covid-19 from the onset of the pandemic up to the time of writing this report. That is, Covid-19 deaths in Ghana from March to August 2020. The method departs slightly from the usual differential equations used in modeling pandemics due to the unique occurrence of deaths from the disease in Ghana. As the methods are basically compound Poisson process, we delve into Levy processes as it allows us to effectively simulate the future behaviour of the death process. To test the effectiveness of the model, we compared the simulated results to the actual reported number of deaths from Covid-19 cases in Ghana from March to August 2020. The results show that at a 95% confidence interval there is no significant difference between the actual deaths and the simulated results. The results of the simulation, when extended to February 2021 (one year after the advent of the pandemic) shows that if the current conditions remain same, that is, if there is no immediate intervention by the discovery of an effective drug or a vaccine, then the number of deaths could reach four hundred and forty six (446) by February 28, 2020.