The hypofunction of osteoblasts induced by glucocorticoids (GCs) has been identified as a major contributing factor for GC-induced osteoporosis (GIO). However, the biological mechanism underlying the effect of GC in osteoblasts are not fully elucidated. Recent studies implicated an important role of phosphoinositide 3-kinase (PI3K)/protein kinase B(Akt) signaling pathway in the regulation of bone growth. We propose that the PI3K/Akt signaling may be implicated in the process of GC-induced osteogenic inhibition in osteoblasts. In this study, primary osteoblasts were used in vitro and in rats in vivo to evaluate the biological significance of the PI3K/Akt pathway in GC-induced bone loss. In vivo, dexamethasone (Dex)-treated rats had low bone mineral density and decreased expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), and phosphorylated Akt (p-Akt) in bone tissue. In vitro study shows that Dex over the dose of 10–8 M remarkably inhibited cellular osteogenesis, as represented by decreased cell viability, lessened ALP activity, and suppressed osteogenic protein expressions including ALP and OCN. Meanwhile, a dramatic downregulation in the PI3K/Akt pathway phosphorylation was also observed in Dex-treated osteoblasts. These changes were marked rescued by treatment with a PI3K agonist 740Y-P. Moreover, downregulation of ALP and OCN expressions by LY294002 can mimic the suppressive effects of Dex. These data together reveal that the suppressed PI3K/Akt pathway is involved in the regulatory action of Dex on osteogenesis.
Read full abstract