This study aimed to investigate the occurrence of eight nitrosamines (NAs) in particulate (PM2.5) and gaseous phases and assess the human health risk associated with these compounds in an urban area of Chuncheon, Gangwon State, South Korea, across four sampling seasons. The findings revealed that the total concentrations of eight NAs measured during the sampling period exceeded the public health recommendation of 0.3 ng/m3 provided by the Norwegian Institute of Public Health, indicating a potential human health risk from NA exposures. In particular, the average total NA concentration observed in the gaseous samples during the winter of 2021 was 18.1 ± 6.46 ng/m3. The primary emission sources could potentially impact the concentrations of NAs in the atmosphere due to their significant positive correlation with primary emission species such as NO2, CO, and SO2. Moreover, the levels of particulate NAs during the summer were negatively correlated with O3, suggesting that their formation might be influenced by ozonation in the aqueous aerosol phase. In addition, the total NA concentrations measured in the gaseous phase were four to six times higher than those measured in the PM2.5 phase throughout the sampling period. Thus, domestic sources have the potential to impact the pollution levels of the research area more significantly than long-range atmospheric transport. In particular, the highest concentrations of NAs in the gas phase were observed during the winter, while the lowest concentrations were recorded in the summer, possibly influenced by photolysis. Nevertheless, the study suggested that tertiary amines might contribute to the presence of gaseous NAs in sunlight. Consequently, further studies focusing on the occurrence of tertiary amines in the gas phase should be considered. The cumulative lifetime cancer risks estimated from inhalation exposure exceeded the acceptable risk level of 10⁻6 for all age groups across all four seasons. Therefore, it is crucial to implement effective control measures to mitigate potential health risks associated with exposure to NAs.