AbstractAbstract 4789Pluripotency and self-renewal, two key characteristics of induced pluripotent stem cells (IPS), make these cells ideally suited for modeling diseases in vitro and generating biological resources usable for drug screening and cell therapy. However, the reprogramming efficiency of somatic cells greatly varies according to the cell type, to the in vitro proliferation index, the number of passages and the age of the donor. Human amniotic liquid-derived cells (hALDC), collected during amniocentesis for the prenatal diagnosis of genetic diseases, represent an abundant source of primary cells. In preliminary experiments we have shown that hALDC expressed endogenous Oct4 and Sox2 proteins suggesting that could be readily amenable to reprogramming. To this end, we have used two strategies using either hALDC or neonatal fibroblasts: (1) lentivirus mediated gene transfer of OCT4, SOX2, LIN28, NANOG, (2) retroviruses mediated gene transfer of OCT4, SOX2, CMYC, KLF4 and (3) lentiviral transfer of OCT4, SOX2. hALDC transduced by these viruses were placed on MEF and b-FGF (10 ng/ml) with daily medium changes. One to three weeks after infection, typical human ES-like colonies could be picked up for expansion before being characterized. HALDC show an increased reprogramming potential with the [OCT4, SOX2, LIN28, NANOG] and [OCT4, SOX2] cocktails, when compared to reprogramming of neonatal fibroblasts. Twelve hALDC-derived-IPS cells were obtained from 12 different samples of amniotic fluid. All hALDC-IPS cell lines maintained a normal karyotype in culture and displayed the morphology and characteristics of human embryonic stem cells, including the surface expression of Tra-160, SSEA-3, SSEA-4, HESCA-1 and alkaline phosphatase, and formed multi-lineaged teratomas upon injection to NOD-SCID mice. Gene expression profiles of the IPS cell lines reveal a high correlation coefficient between hALDC-iPS cells and human embryonic stem cells, and a low correlation between hALDC-iPS and hALDC. When compared to hES cells H1, H9 and Cl01, these cell lines generated hematopoiesis with a variable efficiency in vitro.Amongst the hALDC-IPS cell lines generated by our laboratory (http://www.hescreg.eu/) four lines carry an inherited trisomy of chromosome 21, and three lines carry the homozygous “S” mutation in the beta-globin gene of sickle-cell anemia. All hALDC-IPS cell are currently banked at the Human Pluripotent Stem Cell Core Facility, France. In conclusion, hALDC can be rapidly and efficiently reprogrammed to pluripotency with a limited number of transgenes. Moreover, hALDC-IPS cell lines derived from patients can be used to modelize in vitro the phenotypic features of monogenic diseases such as sickle cell anemia or more complex, multifactorial disorders such as Down's syndrom. The ability to generate hematopoietic differentiation from these cell lines will facilitate the modelling of these hematopoietic disorders. Disclosures:No relevant conflicts of interest to declare.
Read full abstract