As coastal waters face constraints such as the deterioration of the aquaculture environment and limitations on the scale of operation, aquaculture will move towards the deep and distant sea. Large-scale aquaculture vessels are a new method of deep-sea aquaculture, and improving the utilisation efficiency of aquaculture tanks to ensure the best growth conditions for fish inside while ensuring the efficient discharge of particulate matter in these tanks will affect the productivity of aquaculture and the profitability of aquaculture vessels. This study investigated the effects of the tank structure ratio on the flow field characteristics and particulate removal efficiency in the aquaculture tanks of an aquaculture vessel. Numerical simulations of the flow field characteristics in the aquaculture tanks of an 8000 t-class aquaculture vessel at anchor were conducted using the FLOW-3D software to quantitatively evaluate the effects of the corner ratio on the fishability of aquaculture tanks and the efficiency of particulate emission using the parameters related to flow velocity, turbulence intensity, capacity utilisation rate, and particulate removal efficiency. The simulation results show that the tanks with corner structures have better flow field characteristics, which include a higher flow velocity, turbulence intensity, and discharge effect. When the corner length is more than 1/3 of the tank length, increasing the corner distance does not significantly enhance the optimisation of the flow field characteristics in the tank. Overall, this study’s results provide a reference basis for the structural design and optimisation of aquaculture tanks in aquaculture vessels.
Read full abstract