Biological samples—such as tissues, blood and cells—are an increasingly important tool for research into human diseases and their genetic and physiological causes. To ease their storage and access, many of these samples are now stored in biobanks. The number of human biological samples in such collections amounted to several hundred million in 1999 in the USA alone—about one sample per US citizen (Eiseman, 2000; Azarow et al , 2003)—and is increasing rapidly. Three‐quarters of the clinical trials that drug companies submit to the US Food and Drug Administration (Rockville, MD, USA) for approval now include a provision for sampling and storing human tissue for future genetic analysis (Abbott, 2003). At the same time, there is a boom of population biobanks, as more and more countries establish new sample collections (Kaiser, 2002). Among the best known are: the Icelandic Health Sector Database; the Estonian Genome Project; the UK Biobank; the CARTaGENE Project in Quebec, Canada; the Banco Nacional de ADN in Spain; the International HapMap Project; and several US biobanks, such as the National Children's Study, the Marshfield Clinic's Personalized Medicine Research Project and the National Health and Nutrition Examinations Surveys. ![][1] This boom of biobanks has spawned a ‘boomlet’ of regulations and guidelines, which has created controversies, particularly about the importance and definition of informed consent. The consent of participants is usually required before biobank samples can be used in research, but the nature of this consent, and how it is obtained, vary widely. Many European guidelines take the view that general consent is acceptable to use samples for future, as yet unspecified, research projects; US and Canadian policy follows a more rigorous standard of consent. Until 2004, both Europe and the USA considered coded and linked anonymized samples—in which a code links the sample to its donor—as identifiable and therefore … [1]: /embed/graphic-1.gif
Read full abstract