The foot arches are responsible for proper foot loading, optimal force distribution, and transmission throughout the soft tissues. Since the foot arch is an elastic structure, able to adapt to forces transmitted by the foot, it was reported that low arch is related to excessive foot pronation, while high arched foot is more rigid and inflexible. Therefore, it is also probable, that foot arch alterations may change the force transmission via myofascial chains. The objective of this study was to evaluate the effect of symmetrical and asymmetrical excessive feet arching on muscle fatigue in the distal body parts such as the lower limbs, trunk, and head. Seventy-seven women (25.15 ± 5.97 years old, 62 ± 10 kg, 167 ± 4 cm) were assigned to three groups according to the foot arch index (Group 1—both feet with normal arch, Group 2—one foot with normal arch and the other high-arched, Group 3—both feet with high-arch). The bioelectrical activity of the right and left hamstrings muscles, erector spine, masseter, and temporalis muscle was recorded by sEMG during the isometric contraction lasting for 60 s. The stable intensity of the muscle isometric contraction was kept for all the time during the measurement. Mean frequency difference (%), slope (Hz), and intercept (Hz) values were calculated for muscle fatigue evaluation. No differences were observed in fatigue variables for all evaluated muscles between the right and left side in women with symmetrical foot arches, but in the group with asymmetric foot arches, the higher muscle fatigue on the normal-arched side compared to the high-arched side was noted. Significantly greater values of the semitendinosus—semimembranosus muscle frequency difference was observed on the normal-arched side compared to the high-arched side (p = 0.04; ES = 0.52; −29.5 ± 9.1% vs. −24.9 ± 8.4%). In the group with asymmetric foot arches, a significantly higher value of lumbar erector spinae muscle frequency slope (p = 0.01; ES = 1.32; −0.20 ± 0.04 Hz vs. −0.14 ± 0.05 Hz) and frequency difference (p = 0.04; ES = 0.92; −7.8 ± 3.1% vs. −4.8 ± 3.4%) were observed on the high-arched foot side compared to the side with normal foot arching. The thoracic erector spine muscle frequency slope was significantly larger in women with asymmetrical arches than in those with both feet high-arched (right side: p = 0.01; ES = 1.25; −0.20 ± 0.08 Hz vs. −0.10 ± 0.08 Hz); (left side: p = 0.005; ES = 1,17; −0.19 ± 0.04 Hz vs. −0.13 ± 0.06 Hz) and compared to those with normal feet arches (right side: p = 0.02; ES = 0.58; −0.20 ± 0.08 Hz vs. −0.15 ± 0.09 Hz); (left side: p = 0.005; ES = 0.87; −0.19 ± 0.04 Hz vs. −0.14 ± 0.07 Hz). In the group with asymmetric foot arches, the frequency difference was significantly higher compared to those with both feet high-arched (right side: p = 0.01; ES = 0.87; −15.4 ± 6.8% vs. 10.4 ± 4.3%); (left side: p = 0.01; ES = 0.96; 16.1 ± 6.5% vs. 11.1 ± 3.4%). In the group with asymmetric foot arches, a significantly higher value of the masseter muscle frequency difference was observed on the high-arched side compared to the normal-arched side (p = 0.01; ES = 0.95; 6.91 ± 4.1% vs. 3.62 ± 2.8%). A little increase in the longitudinal arch of the foot, even though such is often not considered as pathological, may cause visible changes in muscle function, demonstrated as elevated signs of muscles fatigue. This study suggests that the consequences of foot high-arching may be present in distal body parts. Any alterations of the foot arch should be considered as a potential foot defect, and due to preventing muscle overloading, some corrective exercises or/and corrective insoles for shoes should be used. It can potentially reduce both foot overload and distant structures overload, which may diminish musculoskeletal system pain and dysfunctions.
Read full abstract