Detecting pipeline leaks is an essential factor in maintaining the integrity of fluid transport systems. This paper introduces an advanced deep learning framework that uses continuous wavelet transform (CWT) images for precise detection of such leaks. Transforming acoustic signals from pipelines under various conditions into CWT scalograms, followed by signal processing by non-local means and adaptive histogram equalization, results in new enhanced leak-induced scalograms (ELIS) that capture detailed energy fluctuations across time-frequency scales. The fundamental approach takes advantage of a deep belief network (DBN) fine-tuned with a genetic algorithm (GA) and unified with a least squares support vector machine (LSSVM) to improve feature extraction and classification accuracy. The DBN-GA framework precisely extracts informative features, while the LSSVM classifier precisely distinguishes between leaky and non-leak conditions. By concentrating solely on the advanced capabilities of ELIS processed through an optimized DBN-GA-LSSVM model, this research achieves high detection accuracy and reliability, making a significant contribution to pipeline monitoring and maintenance. This innovative approach to capturing complex signal patterns can be applied to real-time leak detection and critical infrastructure safety in several industrial applications.