Based on medical reports, it is hard to find levels of different hospitalized symptomatic COVID-19 patients according to their features in a short time. Besides, there are common and special features for COVID-19 patients at different levels based on physicians’ knowledge that make diagnosis difficult. For this purpose, a hierarchical model is proposed in this paper based on experts’ knowledge, fuzzy C-mean (FCM) clustering, and adaptive neuro-fuzzy inference system (ANFIS) classifier. Experts considered a special set of features for different groups of COVID-19 patients to find their treatment plans. Accordingly, the structure of the proposed hierarchical model is designed based on experts’ knowledge. In the proposed model, we applied clustering methods to patients’ data to determine some clusters. Then, we learn classifiers for each cluster in a hierarchical model. Regarding different common and special features of patients, FCM is considered for the clustering method. Besides, ANFIS had better performances than other classification methods. Therefore, FCM and ANFIS were considered to design the proposed hierarchical model. FCM finds the membership degree of each patient’s data based on common and special features of different clusters to reinforce the ANFIS classifier. Next, ANFIS identifies the need of hospitalized symptomatic COVID-19 patients to ICU and to find whether or not they are in the end-stage (mortality target class). Two real datasets about COVID-19 patients are analyzed in this paper using the proposed model. One of these datasets had only clinical features and another dataset had both clinical and image features. Therefore, some appropriate features are extracted using some image processing and deep learning methods. According to the results and statistical test, the proposed model has the best performance among other utilized classifiers. Its accuracies based on clinical features of the first and second datasets are 92% and 90% to find the ICU target class. Extracted features of image data increase the accuracy by 94%. The accuracy of this model is even better for detecting the mortality target class among different classifiers in this paper and the literature review. Besides, this model is compatible with utilized datasets about COVID-19 patients based on clinical data and both clinical and image data, as well. • A new hierarchical model is proposed using ANFIS classifiers and FCM clustering method in this paper. Its structure is designed based on experts’ knowledge and real medical process. FCM reinforces the ANFIS classification learning phase based on the features of COVID-19 patients. • Two real datasets about COVID-19 patients are studied in this paper. One of these datasets has both clinical and image data. Therefore, appropriate features are extracted based on its image data and considered with available meaningful clinical data. Different levels of hospitalized symptomatic COVID-19 patients are considered in this paper including the need of patients to ICU and whether or not they are in end-stage. • Well-known classification methods including case-based reasoning (CBR), decision tree, convolutional neural networks (CNN), K-nearest neighbors (KNN), learning vector quantization (LVQ), multi-layer perceptron (MLP), Naive Bayes (NB), radial basis function network (RBF), support vector machine (SVM), recurrent neural networks (RNN), fuzzy type-I inference system (FIS), and adaptive neuro-fuzzy inference system (ANFIS) are designed for these datasets and their results are analyzed for different random groups of the train and test data; • According to unbalanced utilized datasets, different performances of classifiers including accuracy, sensitivity, specificity, precision, F-score, and G-mean are compared to find the best classifier. ANFIS classifiers have the best results for both datasets. • To reduce the computational time, the effects of the Principal Component Analysis (PCA) feature reduction method are studied on the performances of the proposed model and classifiers. According to the results and statistical test, the proposed hierarchical model has the best performances among other utilized classifiers.