Abstract

In image classification, there are no labeled training instances for some classes, which are therefore called unseen classes or test classes. To classify these classes, zero-shot learning (ZSL) was developed, which typically attempts to learn a mapping from the (visual) feature space to the semantic space in which the classes are represented by a list of semantically meaningful attributes. However, the fact that this mapping is learned without using instances of the test classes affects the performance of ZSL, which is known as the domain shift problem. In this study, we propose to apply the learning vector quantization (LVQ) algorithm in the semantic space once the mapping is determined. First and foremost, this allows us to refine the prototypes of the test classes with respect to the learned mapping, which reduces the effects of the domain shift problem. Secondly, the LVQ algorithm increases the margin of the 1-NN classifier used in ZSL, resulting in better classification. Moreover, for this work, we consider a range of LVQ algorithms, from initial to advanced variants, and applied them to a number of state-of-the-art ZSL methods, then obtained their LVQ extensions. The experiments based on five ZSL benchmark datasets showed that the LVQ-empowered extensions of the ZSL methods are superior to their original counterparts in almost all settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.