Averrhoa carambola (Star fruit) is a drought resistant edible fruit belongs to family Oxalidaceae. It is native of Malaysia and further cultivation is extended to China, Southeast Asia, India and Northern South America. Star fruit has juicy texture and used in salads, beverages and traditionally it has been used for ayurvedic medicines in India, Brazil and China (Abduh et al. 2023). In early January 2023, we observed the symptoms of raised, more or less circular, orange to dark brown, velvet textured, scattered algal leaf spots (1-4 mm) on the upper surface of A. carambola leaves at College farm, Agricultural College, Aswaraopet (17.252039 latitude, 81.109573 longitude) (Supplementary Fig 1). The disease was observed in 2 hectare model orchard with incidence of 45% causing leaf defoliation and thereby reducing the yield and quality of fruits. Transverse section cutting of algal spots revealed the algal thalli at subcuticular region and causing necrosis of epidermal cells. Sporangiophores (n=20) raised from algal leaf spot were cylindrical, 4 to 5 celled, 200-450 µm long x 8-20 µm wide, and forming a head cell with suffultory cells and sporangia on the top. Sporangia (n=20) were spherical to elliptical, rusty brown and 17.5-29 µm long × 18-23.6 µm wide and the total number of sporangia produced by each sporangiophores varies from 1 to 6. Setae (n=20) were filamentous with three to six celled, 17.5-50 µm long × 2.5-7.5 µm wide (Supplementary Figure 2). In our collection, mature gametangia were not observed. Morphological characters were studied on 20 diseased leaf samples collected from randomly selected five plants. To isolate pathogen, fresh algal thalli (n=5) were scraped from host tissue, surface sterilized (70% alcohol (30 s), 1% sodium hypochlorite (30 s) and sterile distilled water (3 × 60 s), inoculated to trebouxia liquid media and incubated at 25 ± 2 °C with a 12 hours photoperiod for 72 hours (Vasconcelos et al. 2018). The resultant five algal filaments were subjected to PCR amplification. The primer pair PNS1/NS41 was used in a PCR to amplify a fragment of 18S rRNA (Davis and Kaur 2019). The 18S rRNA gene sequences of the algae were compared using the Basic Local Alignment Search Tool (BLAST; http://www.ncbi.nlm.nih.gov/Blast/Blast.cgi) showed that our partial sequence had 99.5% similarity to C. virescens (KM020142.1). Hence, it was classified as C. virescens and sequences was deposited in NCBI-GenBank with accession numbers (OR053653, OR243777, OR429406, OR429407 and OR243779). For proving pathogenicity, algal filaments obtained from trebouxia liquid media were inoculated to 6 months old healthy A. carambola plant. Pathogenicity test was negative and typical symptoms could not be produced even up to 150 days of inoculation. In previous studies also, due to difficulty with production of zoospores in synthetic media, Koch's postulates of C. virescens as a plant pathogen has not been demonstrated experimentally (Sunpapao et al. 2017; Sanahuja et al. 2018; Kumar et al. 2019). In the second experiment, zoosporangia spore suspension were prepared from small pieces of algal leaf spot tissue processed in a sterile pestle and mortar and filtered through sterile cheesecloth (Sunpapao et al. 2017). A total of five isolates of zoosporangia spore suspension (1 x 102 to 1 x 104/ml of water) was sprayed on healthy, surface sterilized leaves of A. carambola plants (n=5) until runoff with a handheld airpump sprayer and incubated in green house (T: 25 oC, H: 80%). During the experiment leaves were remain attached to plant (5 days old) and plants were 6 months old grown in plastic pots under controlled conditions. Two plants were inoculated with each isolate and three non inoculated control plants were included. Non inoculated controls were sprayed with sterile distilled water. The pathogenicity experiment was repeated. The initial symptoms were produced 60 days after inoculation and complete algal thalli was observed on 90 days after inoculation, control plants were without any symptoms upto 150 days. Reisolated algal thalli from symptomatic plants were morphologically similar to original algal thalli and molecularly identified as C. virescens (accession number OR067193 and OR243810). Red rust caused by C. virescens is a major algal disease in the world and causing severe leaf defoliation in various horticultural crops viz., Mangifera indica (Vasconcelos et al. 2018), Manilkara zapota (Sunpapao et al. 2017), Psidium guajava (Rajbongshi et al. 2022), Ziziphus mauritiana (Shareefa et al. 2022) and Anacardium occidentale (Dooh et al. 2022). The available literature suggest that, this is the first report of algal leaf spot on A. carambola caused by C. virescens in India. This report extends the range of known pathogens associated with A. carambola plant and serves as a basis for development and implementing disease management strategies.