Lignin is a potential renewable feedstock to produce value-added compounds, but the overwhelming bulk of it is either burned for energy or discarded as waste. This paper addressed two critical issues: waste-to-value generation and management by demonstrating the in situ depolymerization of lignin extracted from waste rice straw utilizing the microbial electro-Fenton process in a microbial peroxide-producing cell (MPPC), a type of bio-electrochemical cell, for value addition while synchronously treating wastewater. The MPPC electrochemical voltage yields of 0.171 ± 0.05-0.497 ± 0.2 V produced 9 ± 0.43-34 ± 0.11 mM of H2O2, which was utilized to depolymerize lignin at various concentrations. Interestingly, a direct correlation was observed between lignin depolymerization and H2O2 concentration, while Fourier-transform infrared spectroscopy data revealed a constant disruption of the lignin structure accurately in the wavenumber region of 1000-1750 cm-1 irrespective of the H2O2 concentration. Carboxylic acid derivatives, benzopyran, hexanoic acid, and other valuable compounds were detected in the LC QTOF MS data from the depolymerized lignin mixture. Remarkably, SEM analysis demonstrated morphological changes in depolymerized lignin induced by the oxidative effects of hydroxyl radicals. Biochemical oxygen demand and chemical oxygen demand removal was 60 ± 3-85 ± 1% in anodic wastewater treatment. This research provides a sustainable and efficient technique for lignin valorization and wastewater treatment.
Read full abstract