ABSTRACT An analysis for the torsional dynamic response of end-bearing pile foundations embedded in a layered transversely isotropic geomaterial (soil/rock) is presented. The deformation of the transversely isotropic soil or rock is described by the method of separation of variables. The elasticity theory for a viscoelastic medium with frequency independent hysteretic material damping, and the Extended Hamilton’s Principle are utilised to derive the differential equations describing pile and soil motions. The differential equations are solved analytically in an iterative algorithm. The accuracy of the analysis is verified with existing studies reported in the literature for pile foundations embedded in a homogeneous and layered soil deposit. The effect of the degree of anisotropy on the pile-soil response – dynamic pile-head stiffness, distribution of pile rotation and torque with depth, dimensionless soil displacement function for various values of pile slenderness and pile-soil stiffness ratios in a homogenous soil deposit is investigated. Design charts of static pile-head stiffness in a homogeneous soil deposit for a wide range of pile-soil stiffness and pile slenderness ratios, and degree of anisotropy are also reported. The effect of soil layering for a pile embedded in a two-layered soil deposit is also studied.