Abstract

AbstractShock waves in geological materials are characterized by a sudden release of rapidly expanding gas, liquid, and solid particles. These shock waves may occur due to explosive volcanic eruptions or be artificially triggered. In fact, underground explosions have often been used as an engineering solution for large‐scale excavation, stimulating oil and gas recovery, creating cavities for underground waste storage, and even extinguishing gas field fires. As such, hydrocodes capable of simulating the rapid and significant deformation under extreme conditions can be a valuable tool for ensuring the safety of the explosions. Nevertheless, as most of the hydrocodes are often formulated in an Eulerian grid, this setting makes it non‐trivial to track the deformation configuration of the materials without a level set. The objective of this paper is to propose the use of the material point method equipped with appropriate equation of state (EOS) models as a hydrocode suitable to simulate underground explosions of transverse isotropic geomaterials. To capture the anisotropic effect of the common layered soil deposits, we introduce a new MPM hydrocode where an anisotropic version of the Mie‐Gruneisen EOS is coupled with a frictional Drucker‐Prager plasticity model to replicate the high‐strain‐rate constitutive responses of soil. By leveraging the Lagrangian nature of material points to capture the historical dependence and the Eulerian calculation of internal force, the resultant model is capable of simulating the rapid evolution of geometry of the soil as well as the high‐strain‐rate soil mechanics of anisotropic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call