This study investigates the flexural behavior of three sandwich panels composed of an agglomerated cork core and skins made up of cross-ply [0,90]2 flax or glass layers with areal densities of 100 and 300 g/m2. They are designated by SF100, SF300, and SG300, where S, F, and G stand for sandwich material, flax fiber, and glass fiber, respectively. The three sandwich materials were fabricated in a single step using vacuum infusion with the liquid thermoplastic resin Elium®. Specimens of these sandwich materials were subjected to three-point bending tests at five span lengths (80, 100, 150, 200, and 250 mm). Each specimen was equipped with two piezoelectric sensors to record acoustic activity during the bending, facilitating the identification of the main damage mechanisms leading to flexural failure. The acoustic signals were analyzed to first track the initiation and propagation of damage and, second, to correlate these signals with the mechanical behavior of the sandwich materials. The obtained results indicate that SF300 exhibits 60% and 49% higher flexural and shear stiffness, respectively, than SG300. Moreover, a comparison of the specific mechanical properties reveals that SF300 offers the best compromise in terms of the flexural properties. Moreover, the acoustic emission (AE) analysis allowed the identification of the main damage mechanisms, including matrix cracking, fiber failure, fiber/matrix, and core/skin debonding, as well as their chronology during the flexural tests. Three-dimensional micro-tomography reconstructions and scanning electron microscope (SEM) observations were performed to confirm the identified damage mechanisms. Finally, a correlation between these observations and the AE signals is proposed to classify the damage mechanisms according to their corresponding amplitude ranges.
Read full abstract