Inter-cell interference leads to severe performance degradation in cellular networks, and the study of multi-user interference channel is the corner stone for solving this problem. Amplitude-space layered interference alignment (IA), as an effective complementation to the vector-space IA, is a promising method to increase the data rate in static interference channels. However, recent studies of layered IA has been focused on analyzing the degrees of freedom (DoF) or the achievable rate under specific channel constraints. In this paper, we propose a layered IA scheme that can work with arbitrary channel coefficients. We develop a layer partitioning method and optimize the active layer assignment through linear programming. An implementation scheme is then introduced with multi-level nested lattice codes where the signal and interference are nested in amplitude space, and the interference from different users is nestedly aligned. The performance of the proposed scheme is finally evaluated in homogeneous and heterogeneous cellular networks with practical settings.
Read full abstract