Abstract
We propose a lattice construction from totally real and complex multiplication fields, which naturally generalizes Construction A of lattices from p-ary codes obtained from the cyclotomic field Q(ζ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> ), p a prime, which in turn contains the so-called Construction A of lattices from binary codes as a particular case. We focus on the maximal totally real subfield Q(ζ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sup> + ζ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-r</sup> ) of the cyclotomic field Q(ζ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sup> ), r ≥ 1. Our construction has applications to coset encoding of algebraic lattice codes for block fading channels, and in particular for block fading wiretap channels.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have