Supramolecular liquid-crystalline polyester complexes based on intermolecular hydrogen bonds between the carboxylic group and the pyridyl moieties was prepared by using non-liquid-crystalline H-donors, [3-chloro-4-(butyloxy)benzoic acid (2a), 3-chloro-4-(octyloxy)benzoic acid (2b), 3-chloro-4-(dodecyloxy)benzoic acid (2c) and 3-chloro-4-(tetradecyloxy)benzoic acid (2d)] and H-acceptor-polyester containing pyridyl units. Intermolecular hydrogen bond formation was confirmed by Fourier transform infrared spectroscopy. The liquid-crystalline behavior of the complex formed was established by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The polyester complexes containing 2c and 2d donor components exhibit liquid crystalline mesophase and behave as side-chain liquid-crystalline polymers. Compared with unsubstituted parent acid, the presence of chloro group as a lateral substituent has a little negative effect on the induction of liquid crystallinity on the polyester complexes systems. The results show that the more stability of the obtained H-bonded complexes in comparison with analogues without 3-Cl substituents is due to the increased acidity of benzoic acid moiety.
Read full abstract