ABSTRACT This study aimed to obtain and evaluate thermodynamic properties and hygroscopic equilibrium isotherms of urunday seeds as a function of air relative humidity and temperature, as well as identify the best-fitted mathematical models for adsorption phenomenon. A static-gravimetric method was used to obtain hygroscopic equilibrium moisture content. Seeds were placed in airtight containers with different saturated saline solutions for relative humidity control. These were then kept in BOD incubator chambers at 10, 20, 30, and 40 °C. Hygroscopic equilibrium moisture content decreased as temperature increased, for the same water activity. The Sigma-Copace model best-fitted seed adsorption data for equilibrium water activity intervals between 0.1129 and 0.8232 (dry basis). Both vaporization latent-heat and differential sorption entropy increased with decreasing hygroscopic equilibrium moisture content. Adsorption process in urunday seeds was controlled by enthalpy.