Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process. Using morphometric analysis, we measured wing and thorax traits and assessed trait changes over succession through mixed models. Our findings revealed that carrion succession follows distinct trajectories in forest and grassland environments. Specifically, we observed that Calliphora lopesi predominantly visited carcasses during the final phase of decomposition, resulting in significant differences in species composition and wing size between habitats. In forests, wing size increased toward the later stages of succession, whereas an opposite trend was observed in grasslands. Notably, these trait patterns were only evident at the species level, indicating that intraspecific trait variation is irrelevant. Stronger dispersers tend to arrive during the later stages of succession, suggesting that dispersal has a negligible role in shaping successional dynamics. Instead, environmental differences between habitats drive trait patterns throughout succession. Our results suggest that community composition in ephemeral resources is governed by deterministic processes and that successional stages can be predicted based on blowfly wing traits. Specifically, the presence of the large-winged C. lopesi indicates late decay, while the small-winged Chrysomia albiceps and Lucilia eximia are indicative of early decay.
Read full abstract