Abstract

Salinization has emerged as a worldwide concern hampering the progression of agriculture and husbandry. Arbuscular mycorrhizal (AM) fungi, which abundantly distributed in the Songnen Plain, was considered to possess great potential for combating salinity. To elucidate the relationship between AM fungal community and saline-alkali ecological remediation, a 70-days pot experiment, with the soil in the late succession stage of Songnen saline-alkali habitat was taken as substrate, the dominant plant in the latter as research object, and the rhizosphere soil from three stages as inoculants, was conducted. Simultaneously, Chloris virgate was cultivated to ascertain the accompanying role on mycorrhizal effects and soil improvement. The results revealed that AM fungi effectively regulated the botanical morphogenesis, photosynthesis, osmotic concentration, and antioxidant enzymatic activity under saline-alkali conditions. Specifically, the net photosynthetic rate increased by 1.11–2.44 μmol·(m2)−1·s−1, and the total root length grew by 41.15–148.98 cm after inoculation. Furthermore, the soil salinization and nutrient sequestration were modulated by AM fungi, and that leaded to a notable reduction in soil pH by 0.3 %-1.64 % and an increase in nitrogen content by 52.17 %-118.84 %. In a comprehensive assessment, the utmost ecological advantage appeared in the group inoculated AM fungi procured from the identical stage as the host, with a peak mycorrhizal dependency of 2.93. Additionally, despite enhancing salinization restoration compared to the non-companion group, the associated plants reduced the mycorrhizal dependency of neighbour by a range of 27.04–51.46 %, and significantly decreased the dry weight by 0.09–0.28 g. These results confirmed the occurrence of symbiotic matching phenomenon in saline-alkali habitats and suggested that the mechanism should be considered as utilizing AM fungi for ecological restoration. However, the introduction of companion should be cautious due to their complex effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.