Abstract

Salt stress is a major constraint on agricultural productivity, particularly affecting crop growth and yield. This study aims to evaluate salt resilience in mustard (Brassica juncea) by investigating variations in growth, yield, and physiological tolerance indicators among selected cultivars. Advanced analytical techniques, including Near-Infrared Spectroscopy (NIRS) and Gas Chromatography-Mass Spectrometry (GC-MS) profiling, were employed to decipher the mechanisms underlying salt tolerance. NIRS was utilized for its rapid, non-destructive analysis of biochemical variations among the cultivars, while GC-MS profiling provided a detailed understanding of the metabolomic changes induced by salt stress. This integrated approach enabled the identification of crucial metabolites and biomarkers associated with salt tolerance and yield enhancement. The results indicated significant cultivar-specific differences in metabolic profiles which correlated with growth and yield (pod number, pod length,pod biomass, seed number and seed weight) under salt stress. The most resilient cultivar demonstrated increased accumulation of osmoprotectants, antioxidants, and other stress-related metabolites. These findings underscore the importance of specific traits and metabolites in conferring salt tolerance.This comprehensive study offers valuable insights for breeding programs aimed at developing salt-tolerant mustard cultivars, thereby contributing to sustainable agriculture in saline environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.