The co-cultivation of fungi with microalgae facilitates microalgae harvesting and enhances heavy metal adsorption. However, the mechanisms of fungal tolerance to cadmium (Cd) have not yet been studied in detail. In this study, functional groups of fungi were analyzed under Cd stress using Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM) to explore their morphology. Confocal laser scanning microscope (CLSM) was used to characterize the changes in the content of extracellular polysaccharides and proteins, and a decrease in the ratio of glutathione (GSH) to oxidized glutathione (GSSG) was monitored. The GSH and GSSG contents in mycelium were 7.4 and 7.9 times higher than that in the control, respectively. After 72 h of Cd treatment, the fungal extracellular polysaccharide and extracellular protein contents increased by 16 and 11.4 mg/g, respectively, compared to the control. This provided several functional groups for the complexation of Cd ions to enhance fungal Cd tolerance. The metabolomic and transcriptomic results revealed a total of 358 differential metabolites after 20, 48, and 72 h in the positive and negative ion modes, and the number of differential metabolites specific to each group was 104, 14, and 89, respectively. There were 927, 1167, and 1287 up-regulated genes, and 1301, 1480, and 1683 down-regulated genes at 20, 48, and 72 h, respectively. Energy metabolism, amino acid metabolism, and the ABC transport system are the key metabolic pathways for tolerance enhancement and heavy metal detoxification in fungi. The expression of S-cysteinosuccinic acid was significantly up-regulated after Cd stress and associated with enhanced fungal tolerance and resistance to Cd.
Read full abstract