A new blind watermarking scheme for three-dimensional point-cloud models is proposed based on vertex curvature to achieve an appropriate trade-off between transparency and robustness. The root mean square curvature of local set of every vertex is first calculated for the three-dimensional point-cloud model and then the vertices with larger root mean square curvature are used to carry the watermarking information; the vertices with smaller root mean square curvature are exploited to establish the synchronization relation between the watermark embedding and extraction. The three-dimensional point-cloud model is divided into ball rings, and the watermarking information is inserted by modifying the radial radii of vertices within ball rings. Those vertices taking part in establishing the synchronization relation do not carry the watermarking information; therefore, the synchronization relation is not affected by the embedded watermark. Experimental results show the proposed method outperforms other well-known three-dimensional point-cloud model watermarking methods in terms of imperceptibility and robustness, especially for against geometric attack.