Accurate bowel segmentation is essential for diagnosis and treatment of bowel cancers. Unfortunately, segmenting the entire bowel in CT images is quite challenging due to unclear boundary, large shape, size, and appearance variations, as well as diverse filling status within the bowel. In this paper, we present a novel two-stage framework, named BowelNet, to handle the challenging task of bowel segmentation in CT images, with two stages of 1) jointly localizing all types of the bowel, and 2) finely segmenting each type of the bowel. Specifically, in the first stage, we learn a unified localization network from both partially- and fully-labeled CT images to robustly detect all types of the bowel. To better capture unclear bowel boundary and learn complex bowel shapes, in the second stage, we propose to jointly learn semantic information (i.e., bowel segmentation mask) and geometric representations (i.e., bowel boundary and bowel skeleton) for fine bowel segmentation in a multi-task learning scheme. Moreover, we further propose to learn a meta segmentation network via pseudo labels to improve segmentation accuracy. By evaluating on a large abdominal CT dataset, our proposed BowelNet method can achieve Dice scores of 0.764, 0.848, 0.835, 0.774, and 0.824 in segmenting the duodenum, jejunum-ileum, colon, sigmoid, and rectum, respectively. These results demonstrate the effectiveness of our proposed BowelNet framework in segmenting the entire bowel from CT images.
Read full abstract